On the error resilience of ordered binary decision diagrams
نویسندگان
چکیده
An Ordered Binary Decision Diagram (OBDD) is a data structure that is used in an increasing number of fields of Computer Science (e.g., logic synthesis, program verification, data mining, bioinformatics, and data protection) for representing and manipulating discrete structures and Boolean functions. The purpose of this paper is to study the error resilience of OBDDs and to design a resilient version of this data structure, i.e., a self-repairing OBDD. In particular, we describe some strategies that make reduced ordered OBDDs resilient to errors in the indices, that are associated to the input variables, or in the pointers (i.e., OBDD edges) of the nodes. These strategies exploit the inherent redundancy of the data structure, as well as the redundancy introduced by its efficient implementations. The solutions we propose allow the exact restoring of the original OBDD and are suitable to be applied to classical software packages for the manipulation of OBDDs currently in use. Another result of the paper is the definition of a new canonical OBDD model, called Index-Resilient Reduced OBDD, which guarantees that a node with a faulty index has a reconstruction cost O(r), where r is the number of nodes with corrupted index. Experimental results on a classical benchmark suite validate the proposed approaches.
منابع مشابه
Ordered Binary Decision Diagrams and Minimal Trellises
Ordered binary decision diagrams (OBDDs) are graph-based data structures for representing Boolean functions. They have found widespread use in computer-aided design and in formal veriication of digital circuits. Minimal trellises are graphical representations of error-correcting codes that play a prominent role in coding theory. This paper establishes a close connection between these two graphi...
متن کاملOrdered Binary Decision Diagrams and Minimal Trellises John La erty
Ordered binary decision diagrams (OBDDs) are graph-based data structures for representing Boolean functions. They have found widespread use in computer-aided design and in formal veri cation of digital circuits. Minimal trellises are graphical representations of error-correcting codes that play a prominent role in coding theory. This paper establishes a close connection between these two graphi...
متن کاملFunction-driven Linearly Independent Expansions of Boolean Functions
The paper presents a family of new expansions of Boolean functions called Function-driven Linearly Independent (fLI) expansions. On the basis of this expansion a new kind of a canonical representation of Boolean functions is constructed: Function-driven Linearly Independent Binary Decision Diagrams (fLIBDDs). They generalize both Function-driven Shannon Binary Decision Diagrams (fShBDDs) and Li...
متن کاملDynamic minimization of OKFDDs
We present methods for the construction of small Ordered Kronecker Functional Decision Diagrams (OKFDDs). OKFDDs are a generalization of Ordered Binary Decision Diagrams (OBDDs) and Ordered Functional Decision Diagrams (OFDDs) as well. Our approach is based on dynamic variable ordering and decomposition type choice. For changing the decomposition type we use a new method. We brieey discuss the ...
متن کاملFrankfurt am Main , March 1995 Dynamic Minimization of OKFDDs
We present methods for the construction of small Ordered Kronecker Functional Decision Diagrams (OKFDDs). OKFDDs are a generalization of Ordered Binary Decision Diagrams (OBDDs) and Ordered Functional Decision Diagrams (OFDDs) as well. Our approach is based on dynamic variable ordering and decomposition type choice. For changing the decomposition type we use a new more eecient method. The quali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 595 شماره
صفحات -
تاریخ انتشار 2015